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Vegetation change affects climate

Global land carbon feedback to climate
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« Carbon cycle and biogeophysical (energy balance)

effects

(Friedlingstein et al. 2003, Arora et al. 2014, O’Halloran et al. 2012)



Vegetation change affects climate and
watersheds
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(Pugh & Small 2012; Bearup et al. 2014)



Disturbance and Vegetation Dynamics
in Earth System Models Workshop

* March 15-16, 2018 Gaithersburg, MD
« Co-organized with Jim Clark, Duke U.
« Participants had expertise in

0 Earth system modeling, vegetation dynamics
(demography), individual-based models, disturbance
(fire, hurricane, insect outbreak, drought) impacts,
ecophysiology, statistical methods, manipulative
experiments, etc.

* Report in draft form
0 Expected end of May 2018
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Terms

« Vegetation dynamics — birth, growth, death &
competition/dispersal

« Disturbance — discrete events that disrupt the structure and
function of an ecosystem

 Chronic environmental change can alter vegetation
dynamics and disturbance regimes

« Crossing (unknown) thresholds into novel regimes -
probable large-scale biome transitions

» Major challenge for understanding and prediction



Hurricanes

Disturbance intensity following Hurricane Maria, 2017
A R N El Yunque National Forest
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(Fang et al. 2018)




Forest damage and resilience

 Differential tree mortality and damage
0 Palms
0 Strategies for regrowth?
« Massive litterfall, rapid decomposition
0 Fate of C, nutrients?
« Damaging winds occur elsewhere (e.g., Amazon basin)
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(Negron-Juarez et al. in press)




Cumulative recruitment

Rising temperature alters dynamics

* Recruitment declines with warmer temperatures in subalpine forest

* Increasing mortality in many Western US forests
0 Temperature? Drought? Insects? Tree density?

Engelmann spruce recruitment Engelmann spruce population
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Bark thickness (mm)

Traits determine vulnerabillity,
resistance and resilience

« Combinations of plant traits yield ecological strategies
that reflect adaptations to disturbance regimes

2 Frequent fire = thick bark (3:1, savanna:forest)
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The complexity challenge: putting
ecology back into ecosystems
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‘Cohort-based’ models are intermediate
solutions

e.g., Functionally Assembled Terrestrial Ecosystem
Simulator (FATES)

Big Leaf Model Cohort model Stochastic Individual Model
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Cohorts coexist on each tile (patch)

Each time-since-disturbance tile contains cohorts of plants, defined by PFT and size.
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(Koven, Fisher, Knox)



Benefits for modeling vegetation
dynamics and disturbance

Heterogeneity in light availability
CLM5/ELM —  CLM/ELM(FATES
) Competition (for light), exclusion &
— coexistence
Mechanistic Ecosystem Assembly

“Big-Leaf” vegetation Demographic Vegetation

Recovery after Disturbance (fire, land
use, mortality)

Arbitrary PFT definition

PFT distribution emerges from trait

filtering

(Koven, Fisher, Knox)



Are tropical forests resilient to drought?
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Functional types responded to
hydroclimate change
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Variable hydroclimates maintains
functional diversity
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Wetter hydroclimates favor
drought-intolerant functional types
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Drier hydroclimates favor drought-

tolerant functional types

4 plant functional types:
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Aboveground biomass [kg C m]

Functional diversity provides
resilience to hydroclimate change
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FATES as a community model: status

 FATES — demographic vegetation model for use in
E3SM/CESM (https://github.com/NGEET/fates-release)

* Global parameterization & testing (Holm, Fisher)
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https://github.com/NGEET/fates-release

FATES as a community model: status

 FATES — demographic vegetation model for use in
E3SM/CESM (https://github.com/NGEET/fates-release)

* Global parameterization & testing (Holm, Fisher)
* Initial disturbance processes in FATES
2 Plant hydrodynamics for drought effects (Xu,

Christoffersen)
2 Fire spread and effects on vegetation (Shuman,
FISher) 4000 50yrs Fir.e, Bare'Gro'u,né. ’:f
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https://github.com/NGEET/fates-release

FATES as a community model: status

 FATES — demographic vegetation model for use in
E3SM/CESM (https://github.com/NGEET/fates-release)

* Global parameterization & testing (Holm, Fisher)
* Initial disturbance processes in FATES

2 Plant hydrodynamics for drought effects (Xu,
Christoffersen)

2 Fire spread and effects on vegetation (Shuman,
Fisher)

2 Tree harvest (Huang, Xu)

» Site-scale tropical forest testbeds at BCl, Panama;
Manaus, Brazil; Panama rainfall gradient (emerging)



https://github.com/NGEET/fates-release

Needs: Observational testbeds for
FATES evaluation and development
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Knowledge gaps

« What are the environmental sensitivities of key
demographic and disturbance processes?

 What is the relationship between vegetation damage and
mortality?

 How fast can ecosystem transitions occur?

 How does anthropogenic disturbance or its legacy alter
ecosystem vulnerability to disturbance and recovery?

 How do nutrients constrain vegetation development &
competitive dynamics?



Elements needed

Complex dataset Data
integration and use synthesis
Community effort

Demographic, dynamic trait models
Disturbance processes & impacts
Benchmark models (IBMs, SDMs)

Ameriflux BADM

ShrubHub

New sensing approaches
Distributed experiments

New Novel benchmarks

observations

Modeling
advances
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Thanks!



