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Project Abstract:  
Sustainable management of watershed systems depends on quantitative modeling capability for the hydrologic 
and biogeochemical processes that control watershed system dynamics and water availability and quality. The 
ExaSheds project is pursuing a new watershed predictive capability that combines data-driven machine learning 
(ML) approaches and process-based (PB) hydrobiogeochemical simulation while taking advantage of 
leadership-class supercomputers. One component of that long-term vision is a PB-ML hybrid capability that 
uses the output of high-resolution process-based simulations as one of the inputs to ML models.  
 
We are testing a hybrid approach using multi-decadal stream discharge data from the conterminous US-scale 
CAMELS dataset and short records of stream discharge from the East River, Colorado, watershed. Long Short-
Term Memory (LSTM) networks were used for the ML approach and well-established semidistributed 
hydrology models were used for the process-based models. The hybrid approach outperforms both the LSTM 
and the PB approaches. For the East River catchments, the hybrid model was successfully trained using only 
two years of training data. These results suggest that process-based simulations can improve the robustness of 
ML models when inputs are out of sample and allow them to be trained with shorter records.  
 
We used semi-distributed models as the process-based models in this initial test, but the long-term vision is to 
replace those with high-resolution simulations running on leadership class computers. To that end, we are also 
refactoring the integrated watershed simulator ATS to run on heterogeneous computing architectures that 
combine CPUs and GPU coprocessors. ATS was refactored using the Kokkos library, which abstracts data and 
execution models from the process representations, thus allowing the same code to be mapped onto a variety of 
computer architectures including leadership class supercomputers. Three-dimensional solutions of Richards 
equation on the Summit supercomputer demonstrate the feasibility of the approach.  

  


